What is an Op-Amp? Operations Amplifier Circuits Explained

What is an Op-Amp?

You’ve probably heard the term “op-amp” thrown around in electronics jargon, but what are these components? Operations amplifiers — op-amps for short, are integrated circuits, constructed mostly out of transistors and resistors. These integrated circuits multiply an input signal to a larger output. You can use these components with voltage and current in both DC and AC circuits. 

Karl D. Swartzel Jr. invented the first op-amp in 1967, and he originally conceived them to do mathematical operations in analog computers — thus the “operation” part of their name. We now use op-amps in many other applications, and they form the basis of many modern analog electronic circuits.

What Does an Op-Amp Do?

At their most basic, an op-amp takes a differential signal — the voltage difference between the V+ and V- pins — and outputs a voltage proportional to this difference through the Vs+ and Vs- power supply. You can see the Vs+ and Vs- power supply in the image below. Many simplified representations of this component omit the Vs+ and Vs- nodes and only show the V+, V-, and Vout pins.


Fig 1: Op-Amp circuit diagram symbol

This open loop operation typically results in a device gain (known as the open loop gain or AOL) of 100,000 or more. Even a tiny difference in the voltage on the non-inverting (+) and inverting (-) pins works out to an output of nearly the supply voltage when the + input voltage is greater than the — input. This configuration acts as a comparator, turning a potentially varying input signal to a steady on/off output.

Closed-Loop Op-Amps

We usually use op-amps in a closed-loop configuration, with the output voltage feeding back (as feedback) into the inverting input to form a more controllable signal amplification. The simplest way to accomplish this is to use a buffer circuit, where the output feeds back into the inverting input with no resistors or other components.

To understand how this operation works, here are the two op-amp golden rules:

1. The output attempts to make the voltage difference between the inputs zero

2. The inputs draw no current

Here’s how to construct a closed-loop op-amp:

1. Feed the input voltage into the + input

2. Connect the – to the amplifier’s output

3. The output should go to the same value as the + input to keep both equal

This configuration can be useful for weak signals that require an amplified current before triggering another device.


Fig 2: Op-amp with a feedback loop and voltage divider

In the image above, we took the closed-loop configuration concept further. If you want the output voltage to be a different value than the input, add a pair of resistors to form a voltage divider for the feedback loop. Amplification is thus based on the voltage we see at the node between these two resistors, calculated by the following formula:

Vin- = Vout * Rg / (Rg + Rf)

By this formula’s logic, we can state the following:

Vout = Vin- * (Rg + Rf)/Rg

 Vout = Vin- *(1 + Rf/Rg)

The 1 + Rf/Rg term is the closed-loop gain (ACL) of the circuit. If the resistors stay the same as Vin increases or decreases, Vout will vary proportionally by a factor of ACL up to the supply voltage.

Other configurations are also available, including feedback to the inverting pin, and using a voltage divider circuit to allow an op-amp to provide negative and positive voltage.

Op-Amp Differences

Beyond being able to connect and use op-amps in different ways, you can select op-amps with a variety of specifications to fit your application, including variations on:

- Offset voltage

- Maxim supply voltage

- Gain-bandwidth product

You can find a wide variety of other op-amps available in different packages and with different specifications. Take, for example, the LTC2063 from Analog Devices, a low-supply current op-amp available in a variety of packages -- great for a variety of applications.

Articles de presse apparentés


Sorry, your filter selection returned no results.

Nous avons mis à jour notre politique de confidentialité. Prenez un moment pour lire les changements. En cliquant sur "J'accepte", vous acceptez la clause de confidentialité d'Arrow Electronics ainsi que les conditions d'utilisation.

Notre site Internet place des cookies sur votre appareil pour améliorer votre expérience et pour améliorer notre site. Pour en savoir plus sur les cookies que nous utilisons et la façon de les désactiver, cliquez ici. Des cookies et des technologies de suivi peuvent être utilisés à des fins de marketing. En cliquant sur « Accepter », vous consentez au placement de cookies sur votre appareil et à notre utilisation de technologies de suivi. Cliquez sur « En savoir plus » pour de plus amples informations et instructions sur la façon de désactiver les cookies et les technologies de suivi. Même si l'acceptation des cookies et technologies de suivi est volontaire, leur désactivation peut entraîner un mauvais fonctionnement du site Internet et certaines publicités peuvent être moins pertinentes pour vous. Nous respectons votre confidentialité. Lisez notre politique de confidentialité ici.