3D depth sensing technology brings photography into a 3D world

Many people may already have the experience of playing motion-sensing games through 3D depth sensing photography with cameras. This technology involves the use of depth perception of photograph with output in 3D. In general, this type of equipment is equipped with two cameras, of which one is for regular RGB photography while another is for depth perception that captures the objects in three dimensions. These cameras could be extensively applied to motion-sensing games, 3D scanning modules, robot positioning and navigation, unmanned aircrafts, and other forms of barrier-free smart equipment and industrial smart tests.

TOF technology allows for 3D judgment of cameras

The so-called 3D depth sensing photography technology is based on the measurement of Time-of-Flight (TOF) method whereby IR ray at specific range of wave length (such as 850nm~870nm) will be reflected after proper adjustment. The ray will be reflected back after hitting an object. The CMOS sensor of depth camera can capture the objects in different locations through the calculation of TOF and give the information on relevant distance.

There is a wide array of solutions by using TOF technology in market. Texas Instruments has launched a 3-chip TOF solution including the TOF sensor (OPT81x0), analog front-end (VSP5324), and the TOF controller (OPT91xx), and is also equipped with the camera development kit (CDK) for assisting users for the development of related application. This 3D TOF sensor is based on the DepthSense™ technology and can read the image of the CMOS sensor and support high resolution frequency (>50MHz) with 5 times enhancement of signal-to-noise ratio (SNR).

Further, Infineon also launched the 3D image sensor in single chip which is applicable to consumer IRS10x0C (bare die) and automobile use IRS10xxA (bare die and package). There is a built in analog digital converter capable of reading all digital data through the high-speed interfaces and is integrated with the control logic for autonomous depth-image acquisition.

INMOTION at Shenzhen also launched the RGBD 3D vision depth camera that can measure depth image within the sensing scope with range from 0.5-5 m, precision at 10 mm and view angle of 80° (diagonal). The IR ray of specific wavelength can evenly disperse in the space in front of the camera through the micro-lens array developed by INMOTION. This enhanced the light emission efficiency. The device has been tested for using in sophisticated indoor environment and outdoor environment without high intensity sunlight as well.

Indeed, software is critical to this piece of hardware in performing its function in specific application. The software must be able to read the data sent back from the sensor under different forms of applications for analysis and judgment and gives corresponding responses. For example, in a motion-sensing game, it can detect the movements and gestures of the player and make corresponding responses in the game. In 3D scanning application, it can detect and build up 3D model on the object of scanning, or the distance and scope of corresponding distance. In the application of robot for positioning and navigation, this device allows the robot to determine if there are human beings or obstacles in front. For unmanned aircraft, the TOF technology could also be applied to determine if there is an obstacle getting in its way and surpass the obstacle to ensure the safety of personnel and machine. In industrial application, this device can also be used for testing the position of the object or operator and respond with proper action to ensure safe labor environment.

Just one more eye for the machine to transcend from the world of 2D into 3D

The conventional single-lens photographic technology allowed for only 2D image and cannot determine the corresponding distance of the objects or people in the picture. With the use of TOF technology, the machine could possess a second eye just as a human being for mapping out corresponding position of different objects so that machine can possess the ability of sensing space more accurately and hence transcends into the real 3D world. With the interpretation and judgment of the software, the machine can be smarter and gives safer and more convenient application for human beings.

최신 뉴스

Sorry, your filter selection returned no results.

개인정보 보호정책이 업데이트되었습니다. 잠시 시간을 내어 변경사항을 검토하시기 바랍니다. 동의를 클릭하면 Arrow Electronics 개인정보 보호정책 및 이용 조건에 동의하는 것입니다.

당사의 웹사이트에서는 사용자의 경험 향상과 사이트 개선을 위해 사용자의 기기에 쿠키를 저장합니다. 당사에서 사용하는 쿠키 및 쿠키 비활성화 방법에 대해 자세히 알아보십시오. 쿠키와 추적 기술은 마케팅 목적으로 사용될 수 있습니다. '동의'를 클릭하면 기기에 쿠키를 배치하고 추적 기술을 사용하는 데 동의하는 것입니다. 쿠키 및 추적 기술을 해제하는 방법에 대한 자세한 내용과 지침을 알아보려면 아래의 '자세히 알아보기'를 클릭하십시오. 쿠키 및 추적 기술 수락은 사용자의 자발적 선택이지만, 웹사이트가 제대로 작동하지 않을 수 있으며 사용자와 관련이 적은 광고가 표시될 수 있습니다. Arrow는 사용자의 개인정보를 존중합니다. 여기에서 당사의 개인정보 보호정책을 읽을 수 있습니다.